Cactus Technologies Application Note

®

Technologies

CTANO0O08: Life-cycle
Management for Cactus Flash

Memory cards and drives

Covered Products: CF / PC Card / SSD / DOM with
product code -203 or -204 under Microsoft Windows
NT/2000/XP

1. Introduction

Life-cycle management for flash-based storage
media is important because of limited life for NAND
flash devices. Advanced ECC error
detection/correction, dynamic wear-leveling and
media defect management can alleviate the effects
of continuous programming and erase on the
physical flash media. However, these techniques
cannot extend the physical media life indefinitely,
therefore Cactus Technologies has implemented
life-cycle management technologies for customers
to determine the optimum time to renew existing
Cactus Technologies industrial-grade flash storage
cards and drives.

2. The Problem

The intelligent controller on-board Cactus
Technologies industrial-grade flash cards/drives
reserve a percentage of NAND flash blocks as
spare blocks which can be used for bad
sector/block remapping during the life of the device.
We consider a flash card or drive as having reached
its end of useful life when all the spare blocks have
been used for defect sector/block remapping. With
no available spare blocks for defect management,
any unrecoverable ECC read/write errors will be

Cactus Technologies Limited

3 June 2008

considered by the host as a physical defect. For the
end user, this will show up as groups of bad sectors
on the flash card/drive. To many applications, when
bad sectors appear from the physical drive, this
implies incurred data losses due to unrecoverable
read errors, and it is unacceptable from a data
reliability point of view.

From the previous overview, the criteria for end-of-
life for Cactus Technologies industrial-grade flash
memory cards and drives may be defined as the
moment where the number of available spare
blocks for defect remapping has reached less than
5% of total reserved blocks. The flash card/drive will
continue to function, but its data reliability may
deteriorate as the number of spare blocks for defect
remapping decreases.

3. The Solution

Host designers can take advantage of the integral
life-cycle management features on the Cactus
Technologies intelligent controller to determine the
best time to renew cards/drives before they reached
the end-of-life scenario to ensure maximum data
integrity.

Cactus Technologies Limited provides a Windows
NT — based OS driver and application programming
interface (API) for host designers to determine the
number of remaining spare blocks and a simple
TRUE/FALSE status to determine whether a
card/drive should be renewed. The interface works
with the -203/-204 models and its programming
interface is described below.

The Windows NT — based Cactus EOL library
consists of an low-level driver to allow direct access
to Cactus Technologies devices connected to the
ATA bus and PCMCIA-ATA adapters under
Windows NT/2000 and XP, and an user-level DLL
for host designers to obtain the end-of-life
information from supported Cactus Technologies
flash cards/drives connected to the system via
either PCMCIA-ATA or True IDE mode connections.
Due to the use of low-level driver for direct disk
access, administrator-level access is required to
use the Cactus EOL library.

Application Note: CTAN0O8

Cactus Technologies Application Note

The Cactus EOL DLL library exports the following
API functions for host designers to obtain end-of-life
information in terms of initial and remaining spare
blocks on specified ATA interfaces.

® CactusSetATADeviceEnum()
® CactusGetNumOfSpareBlocks()

The DLL API function call
CactusGetNumOfSpareBlocks ()may be used to
query for the end-of-life information from Cactus
Technologies CF and PCMCIA flash cards
operating under either True IDE or PCMCIA ATA
mode, and multiple products may be queried on
different ATA port addresses. By default, the master
and slave devices on the following port addresses
will be queried: 0x1F0, 0x170, Ox1F8, 0x168.

The _atacacTusspareBLocKSINFO data structure
contains the following life-cycle management
information:

1. Number of initial spare blocks on the
card/drive

2. Number of remaining spare blocks on the
card/drive

3. Card service status (TRUE/FALSE)
determined as the 5% remaining spare
block threshold.

Host designers may use the card service status for
determining the optimum time to renew existing
cards / drives, or utilize the information to their
custom requirements.

To change the default port addresses, the
CactusSetATADeviceEnum() function may be
called to specify the 1/0 port address for all ATA
(both native and PCMCIA-ATA) controller on the
system that may be connected to Cactus
Technologies flash cards/drives.

The _arapeviceenuMiNro data structure allows the
host designer to specify non-standard ATA ports or
PCMCIA-ATA port addresses. The data structure
contains a 16-bit port address and 16-bit device
number to indicate master/slave configuration.

The appendix of this application note has sample
code to show the DLL usage on a Cactus

Cactus Technologies Limited

3 June 2008

Technologies industrial-grade CF card.

The CactusEOL Windows library are available from
Cactus Technologies sales representatives
worldwide.

4. Version History

Version Date Change
1.00 December 12, 2007 Initial Version

1.01 June 3, 2008 Minor edits

Application Note: CTAN0O8

Cactus Technologies Application Note 12 December 2007

Appendix: Demonstration code for Cactus EOL library for Windows

#undef UNICODE

#include <windows.h>

#include <stdio.h>

#include "CactusEOLD1ll.h"

#define ATA_MAX_LOCAL_DEVICE_NUMBER 16

DWORD QueryEOL(void)

{
HMODULE hModule;

DWORD status;
int cactus_device_num;
int n;

_ATACACTUSSPAREBLOCKSINFO spare_blocks_info[ATA_MAX LOCAL_DEVICE_NUMBER];
_ATADEVICEENUMINFO device_info[ATA_MAX_LOCAL_DEVICE_NUMBER];
___CactusGetNumOfSpareBlocks CactusGetNumOfSpareBlocks;

_ CactusSetATADeviceEnum CactusSetATADeviceEnum;

hModule = LoadLibrary("CactusEOLD11l.d1l1l");

device_info[0].port = 0x1£f0;
device_info[0].device = 0x00;
device_info[l].port = 0x1£f0;
device_info[l].device = 0x01;
device_info[2].port = 0x170;
device_info[2].device = 0x00;
device_info[3].port = 0x170;
device_info[3].device = 0x01;

// a PCMCIA IDE/ATAPI controller is present on this I/0 port address as displayed Device
// Properties page under Device Manager

device_info[4].port = O0xXFFFO;
device_info[4].device = 0x00;
device_info[5].port = 0xXFFFO;
device_info[5].device = 0x01;

// this is an optional tertiary IDE port

device_info[6].port = 0x1ES8;

device_info[6].device = 0x00;

device_info[7].port = 0x1ES8;

device_info[7].device = 0x01;

if(hModule != NULL)

{

CactusGetNumOfSpareBlocks = (__CactusGetNumOfSpareBlocks)GetProcAddress (
hModule,

"CactusGetNumOfSpareBlocks"
)i

CactusSetATADeviceEnum = (__CactusSetATADeviceEnum)GetProcAddress (
hModule,
“CactusSetATADeviceEnum”

)i

if(CactusSetATADeviceEnum != NULL)
{
status = CactusSetATADeviceEnum(8, device_info);
if (status)
return 1;

if(CactusGetNumOfSpareBlocks != NULL)
{

status = CactusGetNumOfSpareBlocks(&cactus_device_num, spare_blocks_info);

Cactus Technologies Limited 3 Application Note: CTANO0S8

Cactus Technologies Application Note 12 December 2007

}
FreeLibrary(hModule);

if(status) // get spare blocks fail
{

printf(">> Get spare blocks error, the error code is 0x%x\n",status);

}
else // get spare blocks success
{

if(cactus_device_num ==)

{

printf(">> There is no Cactus memory products installed\n",status);

for(n=0; n<cactus_device_num; n++)

{

printf(">>CactusDevice[%d], the info as follows:\n", n+l);
printf(">>Port=0x%x, Device=%d, Initial Spare Blocks=%d,

Current Spare Blocks=%d\n",
spare_blocks_info[n].port,
spare_blocks_info[n].device,
spare_blocks_info[n].initial_spare_blocks,
spare_blocks_info[n].current_spare_blocks,
spare_blocks_info[n].service_status

)i

if(spare_blocks_info[n].service_status == 0)
{
printf(" >>Service Status =%s\n"," Need to be replaced now");
}
else
{
printf(" >>Service Status =%s\n"," OK ");

}

return 0;

Cactus Technologies Limited 4 Application Note: CTANO0S8

